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Abstract. The effect of enhanced backscattering of light from discrete random
media, often referred to as the coherent photometric opposition effect (or weak
photon localization), is a remarkable optical phenomenon that is being actively
studied. When the incident light is unpolarized, the opposition intensity peak
can be accompanied by the so-called opposition polarization effect, which
manifests itself as a sharp asymmetric negative-polarization feature at small
phase angles. The optical phenomenon that causes these effects is the
constructive interference of multiply scattered waves propagating along the
same light-scattering paths in a medium but in opposite directions. The
theoretical description of multiple scattering becomes more complicated for
closely packed media because of potentially significant near-field effects that
can significantly depress the photometric opposition peak and increase the
depth of the negative-polarization feature. In this chapter, we discuss the
opposition effects for semi-infinite sparse scattering media and study their
dependence on concentration and microphysical properties of the constituent
scatterers. Manifestations of the near-field interactions are illustrated by
theoretical calculations for randomly oriented clusters of spherical particles.

1. Introduction

The phenomenon of electromagnetic scattering and absorption is widely
exploited in remote-sensing and laboratory characterization of various objects
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[1–14]. Calculations of different characteristics of radiation scattered by
discrete random media are important in atmospheric optics, astrophysics,
biophysics, and many other areas of science and engineering. More often than
not, multiple-scattering effects on the characteristics of the measured detector
response must be taken into account. In many cases measurements of angular
dependencies of the emerging radiation demonstrate a backscattering
enhancement in the form of a sharp peak of intensity centered at exactly the
backscattering direction. This effect is also known as weak photon localization
or the coherent opposition effect. In the case of unpolarized incident light, it
can be accompanied by the so-called opposition polarization effect in the form
of a branch of negative linear polarization limited to a narrow range of
backscattering angles [8,9,12,14]. Presently, both effects are explained as the
result of constructive interference of multiply scattered waves propagating
inside the medium along direct and reverse trajectories [1–13].

The coherent backscattering effect was first predicted theoretically in
studies of propagation of electromagnetic waves in turbulent plasmas [15].
Then it has been analyzed in numerous experimental and theoretical studies
(see, e.g., [16–18] and references therein). The strong dependence of the
angular width of the interference peak on the particle number density has been
demonstrated both experimentally and theoretically [1–3]. However, only
recently rigorous formulas describing the opposition effects have been derived
in the particular case of normal incidence of light on a plane-parallel layer of a
sparse discrete random medium. Specifically, a complete analytical solution
for nonabsorbing, randomly positioned Rayleigh scatterers has been obtained
in [19–21]. The rigorous approach was later extended to randomly positioned
and randomly oriented particles with arbitrary sizes, shapes, and refractive
indices [22]. A more general case of oblique illumination was analytically
described in [23]. Numerical results obtained in the double-scattering
approximation revealed a significant dependence of the characteristics of the
opposition effects on particle microphysical properties [18,24,25].

Theoretical consideration of multiple light scattering by a closely packed
medium is complicated by potentially significant near-field effects [26–28].
Indeed, the scattered electromagnetic wave in the close vicinity of the scatterer
is strongly inhomogeneous. The analysis of scattering of this wave by an
adjacent particle requires more sophisticated techniques than those used to
address the problem of scattering of a plane electromagnetic wave.

In this chapter, we discuss the opposition effects for sparse media and
closely packed systems of particles. Section 2 summarizes the basic equations
describing the scattering of light by systems of spherical particles. Specific
differences in the description of light scattering by closely packed and by
sparse systems of particles will be discussed. In section 3, equations for the
reflection matrix of a layer of sparse medium are given. Numerical examples
illustrate considerable dependence of the opposition effects on microscopic
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characteristics of the constituent scatterers. In section 4, the near-field effects
and their manifestations in light scattering by randomly oriented clusters of
spherical particles will be qualitatively considered.

2. Basic definitions and equations

Over the past few decades, the approach based on the theory of
electromagnetic scattering by particle ensembles (clusters) has become quite
popular in analyzing the problem of light scattering by discrete random media.
We use the theory of electromagnetic scattering by ensembles of spherical
particles [29] in order to derive equations describing the process of multiple
scattering in discrete random media. An assumption of particle sphericity is
not crucial. However, it allows us to avoid more complex and cumbersome
calculations. The generalization of the results thus obtained to randomly
oriented nonspherical particles forming a low-density medium can be achieved
rather easily [22,23].

Figure 1: Scattering geometry (see text).

Consider a discrete random medium in the form of a homogeneous and
isotropic layer consisting of randomly positioned spherical particles and denote
by 0Z  its geometrical thickness. The scattering geometry is specified using the
coordinate system shown in Fig. 1. An incident plane wave propagates along the

inz -axis of a coordinate system ˆ inn . Throughout the paper, bold letters with
carets ˆ in  denote right-handed coordinate systems ( , ,i i ix y z ) with the iz -axes
along the unit vectors in . Coordinates of scatterers are determined in the
coordinate system ˆ inn  whose xy  plane coincides with the upper boundary of the
medium. The scattered wave propagates along the scz -axis of the coordinate
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system ˆ scn . The rotation from ˆ inn  to ˆ scn  is determined by the Euler angles
, ,ϕ ϑ γ .

It is convenient to describe wave scattering by using the circular-
polarization basis, in which the incident wave can be written as

(0) ˆ( ) exp( )n n in inik=E e n n r , (1)

where 1n = ± , 2 /k π λ= , λ  is the wavelength, and ˆ( )n ine n  is a covariant
spherical basis vector [30] in the coordinate system ˆ inn . When 1n = , the
direction of rotation of the electric vector of the wave (1) corresponds to the
clockwise direction when looking in the direction of the vector inn . The
linearity of the Maxwell equations and boundary conditions allows one to
define the amplitude scattering matrix of the entire layer pnT  as

0
1 11 1 1 1

0
1 11 1 1 1

exp ( )E T T Eikr
E T Tikr E

−

− − − − −

� �� � � �
= � �� � � �−� � � �� �

, (2)

where r  is the distance from the origin of the coordinate system ˆ inn  to the
observation point, and then to express it in the form

( )j
pn pn

j

T t=� . (3)

Here ( )j
pnt  is the 2 2×  amplitude scattering matrix [29] of the j th scatterer.

Equation (2) assumes that all linear dimensions of the medium are small
relative to r . The 4 4×  scattering matrix S, which transforms the Stokes
parameters of the incident wave into those of the scattered light [29], is
defined by the following expression:

( ) *( ) ( ) *( )

,

j j j
pn pn pn

j j j

S t t t t σ
µν µν µν

σ ≠

= � � + � �� � , (4)

where the angular brackets denote ensemble averaging, the indices take on the
values , , , 1p n µ ν = ± , and the asterisk denotes complex conjugation.

We use the standard theory of light scattering by a system of spherical
particles to derive the requisite equations. In this case the field scattered by the
j th particle can be expressed in the form [22,23,29]

).ˆ()ˆ,ˆ(
2

12)exp( *)()(
scpscin

L
Mp

jpn
LM

pLMj

jj DAL
ikr
ikr

nennE �
+

−
= (5)

Here the )exp(  )ˆ,ˆ( ϕiMD scin
L
Mp −=nn )exp()( γϑ ipd L

Mp −  are Wigner D

functions [30], jr  is the distance from particle j  to the observation point, scn

is the unit vector in the scattering direction, ˆ( )p sce n  is a covariant spherical



BACKSCATTERING EFFECTS 225

basis vector in the coordinate system ˆ scn . It is assumed here that the scattering
direction is the same for all particles of the medium.

The coefficients ( )jpn
LMA  are determined by the system of equations [22,29]

( ) ( ) ( ) ( ) ( )

,

ˆ ˆexp ( ) ( , ),jpn jpn jpq sqn q
LM L in j Mn L lm LMlm in sj

q s j lm

A a ik a A Hδ
≠

= + � �n R n n (6)

where ( ) ( ) ( )jpn j j
L L La a pnb= + , ( )j

La  and ( )j
Lb  are the Lorenz-Mie coefficients

[29], 1q = ± , jR  is the radius-vector of particle j  (Fig.1), ˆ sjn  is the

coordinate system with the sjz  axis along the vector sjr , and the
( ) ˆ ˆ( , )q
LMlm in sjH n n are the coefficients of the addition theorem for the vector

Helmholtz harmonics [22,26,31]

.)ˆ,ˆ()()1(
2

12)ˆ,ˆ( 0
0

)( 1111
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11
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qLql

ml
mLMlsjin

l
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sjin

q
LMlm CCDkrhilH −−

−�−+= nnnn (7)

Here ( )lh x  is the Hankel spherical function of the first kind, and the sC  are
the Clebsch-Gordan coefficients [30].

To determine the matrix ( )j
pnt , let us introduce the basis vectors ⊥e  and ||e

with respect to the plane through the vectors inn  and scn . The vector ⊥e  is
perpendicular to the reference planes, whereas the vector ||e  is parallel to

them. Transforming these vectors into spherical basis vectors yields the
contravariant spherical basis vectors [30] ˆ( )n

ine n  and ˆ( )p
sce n , which are

rotated with respect to the vectors ˆ( )n ine n  and ˆ( )p sce n  through the angles ϕ
and γ− , respectively. We, therefore, get from Eqs. (2) and (5)

).ˆ,ˆ(
2

12)exp( *)()(
scin

L
Mp

jpn
LM

LM
jsc

j
pn DALipinikt nnRn �

+−−−= γϕ (8)

The solution of the system of equations (6) can be obtained by iteration.
This representation of the solution corresponds to the expansion of the
coefficients ( )jpn

LMA  in a multiple-scattering series. The first two terms of this
series are

( ) ( )

( ) ( ) ( )

exp ( )

ˆ ˆ           ( , ) exp ( ) ... .

jpn jpn
LM L in j Mn

jpq sqn q
L l LMlm in sj in s mn

q slm

A a ik

a a H ik

δ

δ

= +

+� �
n R

n n n R (9)

By inserting the series (9) into Eq. (8), writing the same series for the
incident wave with the initial polarization ν  and scattered polarization µ , and
calculating the matrix (4) we will obtain the series corresponding to various
scenarios of wave scattering. Let us combine the terms corresponding to the
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same scattering scenario. Then the matrix (4) can be represented as
1 L C O .pn pn pn pn pnS S S S Sµν µν µν µν µν= + + + (10)

Here the matrix S1 corresponds to the first-order scattering, including the
interference of singly scattered waves. The matrix SL is the sum of all
scattering orders corresponding to the case when both waves propagate along
the same path in the same direction, thereby describing incoherent scattering.
The matrix SC is the sum of all scattering orders corresponding to the case
when both waves propagate along the same path, but in opposite directions. In
the backscattering region, the interference of such waves is constructive and
results in the opposition effects. The matrix SO corresponds to the rest of
scattering contributions, including the interference of waves scattered once and
twice, twice and three times, etc.

Thus, the calculation of the matrix (4) reduces to the calculation of the
matrices S1, SL, SC, and SO. It is very difficult to calculate all these matrices for
closely packed media comprising scatterers comparable to the wavelength. In
this case, the matrix SO can contribute significantly to the matrix (4), and all
the matrices must be calculated with the coefficients of the addition theorem in
the form (7). These coefficients describe all peculiarities of the waves in the
vicinity of the scatterers including the near-field effects. For low-density
media, when the distances between the particles jsr >> ,  j sa a� �  (where the

ja� and sa�  are the radii of particles j and s, respectively), these coefficients are

( ) *exp( )2 1ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ).
2

jsq L l
LMlm in sj Mq in sj mq in sj

js

ikrlH D D
ikr

+=
−

n n n n n n          (11)

If the scatterers are randomly positioned and jsr >>λ, then the matrix SO

vanishes, and Eq. (10) takes the form
1 L C .pn pn pn pnS S S Sµν µν µν µν= + +  (12)

In the next section, we will give the equations to calculate the matrix (12)
corresponding to the reflection of radiation from a plane-parallel layer. In
solving these equations numerically, our main interest will be in the
dependence of the opposition effects on microphysical properties of the
medium such as particle size, refractive index, and concentration.

3. Backscattering by a sparse plane-parallel layer

In this section, we consider multiple scattering by a plane-parallel layer
consisting of discrete, randomly positioned scatterers of arbitrary shape and in
random orientation. The incident wave is assumed to propagate normally to
the boundary of the medium. A derivation of the equations describing the
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matrix (12) in this case was given in [22]. The more general case of oblique
illumination is considered in [23]. In the circular polarization basis, the
equations for the matrices S1 and SL, defined per unit area of the boundary,
take the following form:

0

0 0

1 L ( )( )( )

0

Im( )( ) exp 2 ,
cos

kZ
l z pn

pn pn M N l
l

S S d z dz
k

µν
µν µν

η εϑ α
ϑ

� �+ = � �
� �

� � (13)

where η  is the particle number density, , , , 1p n µ ν = ± , 0M nν= − ,

0N pµ= − , ϑ  is the scattering angle (the angle between the incidence and
scattering directions), and ε  is the complex effective refractive index of the
medium. The expansion coefficients ( )( )( )z pn

L
µνα  are determined from the

system of equations

    1

1

( )( )( )( )( ) ( )( )
3

2exp( ) pq qz pn pn
L L z L

qqk
µµν µν πηα χ τ χ= − + �

1

0 0

( )( )( ) exp( ) ( ) ( ) sin ,y qn q L l
L M N M N

l

d d d dν
ρα τ ω ω ρ ω ω× −�� (14)

where ,ρ ω  are polar coordinates of the integration point with respect to the
point z, the angle ω  is measured relative to the backscattering direction,

2 Im( )x xτ ε= , 1N q q= −  ( 1, 1q q = ± ), and cosy z ρ ω= − . The upper
integration limit over ρ  is equal to / cosz ω  for / 2ω π<  and to

0( ) / cosz Z k ω−  for / 2ω π> . The ( )( )pn
L

µνχ  are the coefficients in the
expansion of the individual-particle scattering matrix [29] in the Wigner d
functions [30]. Equations (13) and (14) are equivalent to the vector radiative
transfer equation in the circular-polarization basis.

The corresponding equations for matrix SC are as follows:

0
1 1

1

2
*( )( ) ( )( )( )C

14 0

2 ( 1) exp( ) ,
kZ

q qp z qn qL
pn LM LM

qq LM

S z dz
k

µ ν
νµ

πη ζ β ε= − −� � (15)

where the matrix ( )( )( )z pn
LM

µνβ  is defined by system of equations

1 1

1

( )( ) ( )( )( )( )( )( ) ( )( ) *
1 3

2exp( ) pq q y qn qz pn pn M m
LM LM l lm

qq lm

B z i
k

µ νµν µν πηβ ε χ β−= − + � �

0 0
( ) ( ) exp( ) ( sin sin ) sin .L l

MN mN m Md d J d dρω ω τ ρ ϑ ω ρ ω ω−× − (16)

Here ( )( )pn
LM

µνζ  are the coefficients in the expansion of the phase matrix elements
[22–25] in Wigner d functions, ( )mJ x  are Bessel functions,
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( )1
1 Re( ) 1Im( ) 1 cos 1 1 ,

cos cos
i εε ε ϑ

ϑ ϑ
−� � � �= − + + +� � � �

� � � �
(17)

Figure 2: The angular dependence of the reflection matrix elements for a semi-infinite
medium composed of spherical particles with 3x =�  and 1.35 0m i= +�  for various values
of the filling factor: 1) 0.001ξ = , 2) 0.005ξ = , 3) 0.01ξ = , 4) the incoherent
component. The 0

11F  and 0
21F  are scattering matrix elements for an individual scatterer.
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     1

0 0

( )( )( )( ) ( ) ( ) ( sin sin )
M mpq qpn L l

LM lm MN mN m M
lm

B i d d Jµµν ζ ω ω ρ ϑ ω
−

−=� �

.sin)cosexp( 1 ωωρωρετ ρ dd∗+−× (18)

The matrix SC describes the interference of the conjugate pairs of waves
propagating along the same trajectories in the medium but in opposite directions,
including looped trajectories.

Equations (13)–(18) are rigorous provided that any scatterer is located in the
far-field zone of all other scatterers. They are valid for arbitrary particles in
random orientation. It should be noted that in the case of the exact backscattering
direction (ϑ π= ), the matrix SC can be obtained from the matrix SL using the
equation C L

pn pnS Sνµ µν=  [32].

The above equations for a semi-infinite medium can be solved numerically in
the approximation of several scattering orders. All the calculations below will be
given for the reflection matrix ϑcos2/ 2kSR −=  in the linear-polarization basis.
The transformation of the matrix (12) from the circular-polarization basis to the
linear-polarization one can be found in [29]. The effective refractive index of the
medium is given by ext1 2i C kε η= + , where extC  is the extinction cross section
per particle [29].

Figure 2 depicts all nonzero elements of the reflection matrix in the double-
scattering approximation for a semi-infinite layer composed of identical spherical
particles. The particle size parameter is 2 / 3x aπ λ= =� � , where a�  is the particle
radius, and the particle refractive index is 1.35 0m i= +� . The results are shown
for different values of the filling factor (packing density) 34 / 3aξ π η= � .

As seen from Fig. 2, the interference affects all elements of the reflection
matrix. The linear dependence of the width of the intensity peak on the
packing density (the 11R  curves), which was discussed in theoretical and
experimental studies (see [1–3] and references in [17]), is well noticeable. The
examples given in Fig. 2 as well as other calculations not shown here reveal
the same dependence on ξ  in the other components of the coherent refection
matrix. For instance, the angular position of the 21R  and 34R  extrema depends
linearly on ξ  if the corresponding matrix elements for the incoherent
component depend weakly on ϑ . Otherwise, the superposition of the coherent
and incoherent components disrupts this linear dependence [24].

Figure 3 demonstrates the dependence of the intensity and the degree of linear
polarization of the reflected light on the particle properties and on the order of
scattering. Since the effective refractive index of the medium is kept the same, the
differences in the features of the opposition effects are caused by the differences
in the microscopic characteristics of the scatterers. To explain the influence of the
particle properties on the 11R  element, let us consider the interference of doubly
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scattered waves for two cases of scattering geometry. Let two particles be placed
along the direction of the inn  vector in the first case and along the perpendicular
direction in the second case. Then the phase difference for the waves propagating
along the direct and reverse paths is proportional to 1 cosϑ+  in the first case and
to sinϑ  in the second case. For ϑ π→ , the difference for the first pair of
particles is negligible, whereas for the second one it is proportional to π ϑ− . In
other words, the first pair produces a broader interference peak than the second
one. Particles with 4.5x =�  scatter radiation more effectively in the forward and
backward directions than particles with 3x =�  (compare curves 2, 3 and 1 of Fig.
3c). As a result, the width of the intensity peak for a medium composed of these
particles is larger (compare curves 2, 3 and 1 of Fig. 3a). Particles with

4.5x =� and 1.59 0m i= +�  display a more symmetric phase function than those
with 4.5x =�  and 1.35 0m i= +� , and the peak for these particles is sharper.

Figure 3: The dependence of the relative intensity (a) and the degree of linear
polarization (b) on the particle properties and on the scattering order. The curve
numbers correspond to the following parameters: 1) 3x =� , 1.35+0im =� , 0.0012ξ = ;
2) 4.5x =� , 1.35+0im =� , 0.001ξ = ; 3) 4.5x =� , 1.59+0im =� , 0.001ξ = ; 4) 3x =� ,

1.50+0im =� , 0.0007ξ = ; 5) 3.1x =� , 1.35+0im =� , 0.0011ξ = . In all cases,
Im( ) 0.000286ε = . The dashed curves are for the double-scattering approximation,
whereas the solid ones are computed with the account of the third-order scattering. The

0
11F  and 0

21F  are scattering matrix elements for an individual scatterer.
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The results of Fig. 3(b) demonstrate that the state of polarization of the
backscattered radiation is controlled strongly by the intensity and state of
polarization of singly scattered radiation (i.e., by the angular profiles of 0

11F

and 0
21F ). It is well known that positive polarization of light scattered by

isolated particles leads to a negative-polarization feature in the backscattering
direction [8,9]. The angular dependence of the polarization state for
wavelength-sized spherical particles is much more complex and oscillatory
[29]. The resulting interference of doubly scattered waves can result in
positive polarization (curves 4 and 4') as well as in negative polarization
(curves 1 and 1' and curves 5). Such behavior of polarization was analyzed in
detail in [23,25]. The interference may lead to a more complex dependence of
polarization on the scattering angle, with positive and negative polarization
regions appearing simultaneously (curve 5' in Fig. 3b).

Figure 4: The same as in Fig.3 (a) and (b) but for the third-order-scattering
approximation (dashed curves) and an approximate solution including all orders of
scattering (solid curves). Curves 1 and 1': x� =3, m� =1.35+0.1i, ξ =0.0076; curves 2
and 2': x� =2, m� =1.4+0.5i, ξ =0.0048; curves 3 and 3': x� =3, m� =1.5+0.5i,
ξ =0.0061. In all cases, Im( ) 0.002ε = .

As can be seen in Fig. 3, the angular range where the interference
contributes noticeably to the scattered radiation is becoming narrower with
increasing order of scattering (see also [3]). In Fig. 4 the results of the third-
order-scattering approximation are compared with the results of an
approximate calculation including all orders of scattering, as follows. The
radiation coming to the particle from above is calculated exactly, and a part of
radiation coming to the particle from below is calculated approximately, as if
for an infinite medium. The errors of this approximation were estimated for
the incoherent scattering term for particles with 3x =�  and 1.5 0.5m i= +�  or
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1.5 0.1m i= +�  and do not exceed 10% and 15%, respectively. The explanation
of the angular behavior of the intensity and polarization of the multiply
scattered radiation is similar to that for the double- and third-order-scattering
approximations.

All the results presented in this section were obtained in the approximation
of quasi-homogeneous waves [16], which implies that any particle of the
medium is in the wave zones of all other particles. This assumption allows the
radiation reflected by the medium to be represented as a sum of the matrices
(12) with the coefficients (11). Moreover, the characteristics of individual
scattering particles, such as the scattering matrix [29], can be used in the
calculations of multiply scattered waves. In closely packed media, a wave
propagating from a scatterer to another one can be strongly inhomogeneous.
This effect, which can significantly influence the opposition phenomena, will
be the focus of the next section.

4. Opposition effects for closely packed systems of spherical particles

4.1. Near-field effects

The reflection matrix for a closely packed medium composed of wavelength-
sized scatterers can be represented as a sum of matrices (10) with the
coefficients of the addition theorem (7). These coefficients describe all the
details of the field in the vicinity of any scatterer, including the near-field
effects [26]. We will consider the manifestations of these effects qualitatively
using the field configuration near a spherical scatterer as the simplest example.

Figure 5: Surfaces of constant phase and directions of vectors E (sum of the incident
and scattered waves) in the close vicinity of a spherical particle. The incident wave
propagates along the Z-axis (indicated by the wave vector k) and is polarized along the
X-axis. The particle size parameter is =4x�  and the refractive index is

  1.32 0.05m i= +� .

In the immediate vicinity of an individual particle or a system of particles,
the scattered wave is strongly inhomogeneous. For such a wave, surfaces of
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constant phase and amplitude do not coincide, and the amplitude, polarization,
and propagation directions depend on the location with respect to the scatterer.
When the inhomogeneous wave excites another particle, the resulting scattered
light can differ substantially from that predicted by the theory based on the
consideration of only plane waves. In what follows, the effects caused by wave
inhomogeneity will be referred to as near-field effects.

Direct calculations using the Lorentz–Mie theory for spherical particles
show that the surfaces of constant phase of the total field are funnel-shaped in
the vicinity of the particle (Fig. 5). Such near-field properties are typical for
spherical particle with other size and refractive index [26,28].

Let us consider test Rayleigh particles surrounding a constituent particle
(CP) of a particle aggregate and adopt a coordinate system in which the Z-axis
is along the propagation direction of the incident wave, whereas the XZ-plane
defines the scattering plane (Fig. 6). The incident field is assumed to be
polarized in the scattering plane. If the test particles were far from the CP and
far from each other, they would experience a homogeneous electromagnetic
field (Fig. 6a). The dipole moment induced in the test particles would be along
the X-axis. However, if the test particles are close to each other and to the CP,
a dipole moment induced in test particles 1 and 3 has a non-zero component in
the direction of wave propagation Z (Fig. 6b). At the same time, the
X-component of the dipole moment is smaller than in the case of a large
distance between the CP and the test particles.

Figure 6: Light scattering by a system of dipoles excited by a homogeneous and an
inhomogeneous wave. The incident wave propagates along the Z-axis and is polarized
in the XZ-plane. a): The wave is homogeneous, and all dipole moments point in the X-
direction. b): The wave is inhomogeneous because of the distortion of the wave front
(see Fig. 5), and some dipole moments have a non-zero Z component.

The changes of the dipole moment induced by the high packing density do
not depend on the polarization of the incident wave. If the latter were polarized
perpendicularly to the scattering plane, the roles of test particles 1 and 3 and 2
and 4 would simply be interchanged, i. e. the gross changes of the induced
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dipole moment would be the same and would only be caused by other test
particles. Consideration of light scattering by an ensemble of test dipoles
(without interference waves) shows the intensity at 0=ϑ and πϑ = for
Fig.6b less then for Fig.6a and vice versa at 2/πϑ = . The angle dependence
of the degree of linear polarization is bell-shaped and may be negative for
Fig.6b, whereas for Fig.6a it is positive with maximum value 100% at

2/πϑ = . In other words, the inhomogeneity of the wave in the particle
vicinity and its interaction with neighboring scatterers will reduce the scattered
intensity in the directions 0ϑ ≈  and ϑ π≈  and lead to the appearance (or
enhancement of already existing) negative polarization in the backscattering
region.

An analogous analysis of scattering in a densely packed ensemble of
particles using the other wavelength-sized CPs instead of the test Rayleigh
scatterers requires the consideration of the gradient of the wave
inhomogeneity. Unfortunately, this problem is far from being well-studied. We
can only note the following. The zone of wave inhomogeneity extends to
distances of the order of λ  from the particle surface. Consequently, the near-
field effects are essential only for CPs with sizes comparable to or less than λ
and are negligible for larger particles. A closer examination of the near-field
effects including simulation examples for various types of particles is
performed in [26–28,34]. These examples display a complex dependence of
the near-field effects on the particle properties and the scattering angle. In the
first approximation, the effect of the rotation of the field vector, which is
mainly caused by the radial component of the scattered field, is described by
the interference of waves scattered once and twice. Its contribution strongly
depends on the size and refractive index of the CPs, the distance between
them, and the scattering angle.

4.2. Opposition effects for randomly oriented clusters of spherical particles

We illustrate the scattering phenomena described above using a bisphere as the
simplest example. We assume that the bisphere consists of monomers with the
size parameter 1.49x =� . The complex refractive index of the monomers is

1.80 + 0.01m i=� . A sphere with these optical parameters has neutral (near
zero) polarization at scattering angles close to the backscattering direction and
positive polarization elsewhere. In view of the preceding discussion of wave
interference and near-field effects, this will allow us to demonstrate how the
different optical phenomena contribute to intensity and polarization. To
explain qualitatively all these phenomena, we restrict the analysis to the
double-scattering approximation and use the formulas derived in [26]. The
results are given in Fig. 7 computed for the case of touching spheres. Curves 1
correspond to a single particle. Curves 2 were computed by including the
contributions of single scattering, incoherent double scattering, and the
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interference of singly scattered light. Model 3 additionally takes into account
the contribution of the interference of waves scattered twice, which leads to
the backscattering enhancement of intensity and a weak negative branch in
polarization. Model 4 includes all the components of model 3 plus the
interference of singly and doubly scattered waves, i. e. all first- and second-
order scattering terms. As compared to model 3, the intensity is reduced and
the negative branch develops further. Curves 5 shows the exact solution.

Curves 2–5 are obtained by taking the near field effects into account [see
Eqs. (7) and (10)]. In order to demonstrate what happens if these effects are
ignored, we also show the curves derived for homogeneous waves [see Eqs.
(11) and (12)], i.e., when the waves propagating from one particle to another
are assumed to be spherical and have only tangential components of the field
vector (curves 6). This approach was considered in [8,9]. It is evident that the
homogeneous-wave approximation is invalid for touching monomers, i.e. the
near-field effects must be taken into account in this case. As seen from Fig. 7,
the interference contribution is essential for ϑ  > 130° (compare the behavior
of curves 2, 3, and 6), whereas the near-field effects influence a wider angular
range (compare curves 4 and 3).

Figure 7: The contributions of interference and near-field effects in the backscattering
region as demonstrated by the example of a bisphere. The curves correspond to the
following models. Curves 1 (dots): calculations for single sphere; curves 2–6:
calculations for bispheres. Curves 2 (long dash): single scattering + incoherent double
scattering + interference of light scattered once. Curves 3 (short dash): model 2 +
interference of light scattered twice. Curve 4 (dash triple dot): model 3 + interference
between the light scattered once and twice. Curves 5 (solid): exact calculations. Curves
6 (dot dash): model 3 but without near-field effects (note that the negative branch of
polarization almost vanishes).

Let us now consider the scattering properties of clusters composed of a
large number of monomers and discuss how these properties depend on the
number of monomers, their refractive index, and packing density. Aggregates
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producing a negative branch of polarization in the backscattering region will
be of special interest, because this part of the angular dependence of
polarization is important for the interpretation of observational data for various
objects. Figure 8 shows the aggregate structures used for the scattering
simulations. Clusters 1 have a tetrahedron lattice and the CPs are placed
adjacent to each other in the grid points. The overall shape of the cluster is
close to spherical. This is the most compact aggregate considered in this work.
Clusters 2 also have a tetrahedron lattice, but no condition for equidimensional
shape was imposed. Several more CPs were put on their otherwise compact
surfaces. They preserve the tetrahedron lattice but otherwise where added
randomly. Note that cluster 2 turned out to be more compact in its 50-CP
version than in the 100-CP one. This causes an additional peculiarity of the
polarization (see below). Clusters 3, 5, and 6 were generated by the diffusion-
limited aggregation method [35]. Rather compact random clusters 4 were
generated by the ballistic particle-cluster aggregation method [36]. The fractal
dimensions and the pre-factors are also indicated in Fig. 8 together with the
gyration radius gR  for each cluster. The gyration radius of clusters 4 is

somewhat larger than those of clusters 2 and 3 and somewhat smaller than
those of the sparse aggregates 5 and 6.

Figure 8: The aggregates composed of 50 (top) and 100 (bottom) CPs used in the model
calculations. The first two are regular and have a tetrahedron lattice, the others are
random fractals with different packing parameters (see text for details). The fractal
dimensions, prefactors, and gyration radii (for 100 CPs) are shown in the footnote.

Our numerous calculations for various clusters with a moderate number of
CPs and with the real part of the refractive index ranging from 1.4 to 1.9 show
that the negative polarization branch at °> 150ϑ  can be produced by compact
aggregate structures with CP size parameters 0.7 2x< <�  depending on
Re( )m� . However, the cluster structure is of significant importance. For
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example, for the clusters composed of CPs with 1.5x =�  the value of the
polarization inversion angle can vary within a °15 -wide range depending on
specific cluster structure. This is probably caused by the interference of singly
and doubly scattered waves. In what follows, we present only the results for

1.5x =�  and 1.65 0.05m i= +� . (Note that the angular dependence of the degree
of linear polarization for individual CPs with such properties is close to the
Rayleigh one, i.e., the polarization is positive for all scattering angles and has
a maximum of about 100% near / 2ϑ π= .) A detailed analysis of the optical
properties of randomly oriented clusters composed of spherical particles, as
well as the results for the other values of x�  and m�  can be found in [28].

Figure 9: Intensity and polarization for aggregates of various types (1, 2, 3, and 6)
consisting of 50 and 100 CPs with 5.1~ =x  and .05.065.1~ im +=  The sets of curves for
100 CPs are shifted down by 2.0 for intensity and by 60% for polarization.

A common feature of the aggregates considered is a significant decrease of
polarization at side-scattering angles compared to the polarization of the
individual CPs. As shown in [28], the increase of the real part of the refractive
index strengthens this difference. This can be explained by both the multiple-
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scattering contribution and the near-field effects.
The intensity and polarization of light scattered by four types of cluster

(from those shown in Fig. 8) are displayed in Fig. 9 versus scattering angle.
Although clusters 2 and 3 are also compact (like cluster 1), their scattering
characteristics differ substantially from those of cluster 1, except at scattering
angles 15°–40°, where similar behavior is observed for all three clusters. The
difference is particularly evident in polarization. Some wavy behavior still
appears in the curves for very compact random structures (cluster 3),
especially for 100N =� . However, the regular aggregate 2 with randomly
added monomers on its outside shows a rather smooth angular dependence of
the intensity and polarization. Similarly, if we add random monomers to the
surface of a compact regular cluster (cluster 1) in such a way that each of them
contacts only one of the CPs of the existing cluster, the interference structure
in the curves of the intensity and polarization are damped. The influence of the
structure of the surface layer of the aggregate on the scattering properties will
be considered in detail below. The curves for the fluffy aggregate 6 show no
oscillations. The polarization curve is bell-shaped like that of the individual
CPs. However, the angular dependence for the aggregate has a much lower
maximum (as compared to the polarization of the CP) and a negative branch at
scattering angles close to the backscattering direction.

Figure 10: Dependence of intensity and polarization on the number of monomers (or
cluster size) for cluster type 5 (see Fig. 8). The intensity increases, the polarization
decreases, and the negative branch deepens with increasing the number of CPs.

It is worth noting that the sparse structures 5 and 6 are not very fluffy.
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They contain rather compact blocks of CPs connected by chains. While the
cluster as a whole determines the level of the intensity of the scattered light,
which strongly depends on the cluster size, the blocks are responsible for
generating polarization. This is well seen in Fig. 10, where the characteristics
of type 5 clusters are displayed for an increasing number N�  of CPs. The
increase in N�  depresses slightly the polarization maximum and strengthens
the negative branch, although for larger N�  the latter effect becomes less
noticeable and the inversion angle remains almost unchanged.

Figure 11: The intensity and polarization of light scattered by clusters with different
structure of the surface layer. Additional CPs are placed in a random way on the
outside of the completely regular compact cluster 1. The model for the random cluster 4
is also shown for comparison. The number of CPs is shown for each model. A picture
of the aggregate after 30 CPs have been added to the surface is also shown.

Let us now consider the manifestations of the near-field effects in the
scattering characteristics in more detail using clusters with different structure
of the surface layer. These clusters have been generated in the following way.
The compact regular aggregate of type 1 composed of 50 CPs served as a core.
First, 10 CPs were added to its surface in a random way. Then 20 more CPs
were added to the surface in the same way. The intensity and polarization of
the original cluster and the two modified ones are displayed as functions of
scattering angle in Fig. 11 and compared with those of a type 4 cluster
consisting of 80 monomers. Even a few CPs added to the surface of the regular
type 1 cluster significantly suppress the interference oscillations in the curves
of the original type 1 cluster and make the curves to look similar to those of
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the type 4 cluster with a more random structure. This can be explained as
follows.

A layer of random particles added to the regular cluster works as an
amplitude-phase inhomogeneity for the incident wave (see Fig. 5). After
having passed through this layer, the wave becomes strongly inhomogeneous;
the variations of its amplitude, phase, and propagation direction become
chaotic. If the number of particles placed randomly in the outer layer is large
enough, then there is almost no correlation between the phases of the radiation
produced in the scattering of such a wave by the individual underlying
particles. Consequently, the location of CPs deeper inside the cluster with
respect to each other is unimportant for the scattering process. For the angular
dependence of the intensity, the inner structure of the cluster is even less
important. The intensity level increases with the number of CPs, albeit this
growth also depends on the imaginary part of the refractive index [28]. The
polarization produced in the scattering of inhomogeneous waves has been
already considered in this section. Here we only note that, since the scattering
properties of the inner CPs are not sensitive to their location, the polarization
of the cluster depends only weakly on the number of CPs in the cluster and on
the regularity of its inner structure, but more strongly on its packing density
(see also Fig. 9).

In the backscattering region, the enhancement of intensity is formed by the
CPs in the outer layer of the cluster, where the radiation field is practically
homogeneous. At the same time, the negative polarization is also generated by
the particles below the surface layer of the cluster, where the radiation field is
inhomogeneous, and the amplitude, phase, and propagation direction of the
wave change randomly. Note that the situation is the same in a powder-like
layer, which makes conclusions also relevant to regolith surfaces. Thus, the
field inhomogeneity below the surface layer of the cluster (or regolith) reduces
the dependence of the negative polarization on the location of CPs in the
deeper layers, but not on the compactness. Depending on the structure of the
aggregate, the interference of multiply scattered waves or the near-field
interactions are more efficient for a given cluster. This means that the
opposition effects in intensity and polarization do not always go in parallel.
That is, for the models in Fig. 10 the backscattering enhancement is almost the
same for the clusters composed of 12 and 100 CPs, while the negative branch
is weak for the small aggregate. For the compact regular clusters (Fig. 9), there
is practically no backscattering enhancement, whereas the negative branch is
more pronounced than for the sparse cluster.

5. Conclusions

We have presented the basic relations for electromagnetic scattering by
ensembles of spherical particles and have demonstrated the differences in the
description of the light scattering processes by sparse and closely packed
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systems. In a low-density medium, the wave propagating from a scatterer to
any neighbor is quasi-homogeneous. This allows the single-scattering
characteristics of the individual particles to be used in describing the process
of multiple scattering. We gave the equations quantifying the reflection from a
plane-parallel layer of a sparse discrete random medium. One of them is a
well-known vector radiative transfer equation; the second one describes the
interference of multiply scattered waves resulting in the opposition effects.
Numerical solutions of these equations show considerable dependence of the
opposition effects on the properties of the medium and, specifically, on the
microscopic characteristics of the scatterers.

In closely packed media, the waves in the vicinity of particles are
inhomogeneous. Our qualitative analysis demonstrates that the wave
inhomogeneity can lead to a suppression of the opposition effect in intensity
and to causing (or strengthening) the negative polarization effect in the
backscattering angular region. Computations for randomly oriented clusters
show that the opposition effect in intensity and in the negative branch of
polarization do not always appear simultaneously. Depending on the cluster
structure, either the interference of multiply scattered waves or the near-field
effects can play the decisive role.
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